Chapter 4

Support for Insurgency and Counterinsurgency

US Army Engineers made rapid progress paving main route QL13 from Saigon north through III Corps to An Loc. The paving eased military resupply, eliminated casual mining of the road, and assured continuous usability during the rainy season. But the most dramatic change was in the activity of the rural population as the asphalt moved forward. An explosion of commerce was evident everywhere. Vegetables and pigs went south to the cities, while pots, pans, and yard goods went north to the once nearly isolated villages, first by animal carts, then Lambretta scooters, Citroen buses, and GMC trucks. The Viet Cong threat to villages was broken by the increased responsiveness of Vietnamese government forces and services over the improved road plus the realization by the population of an improving quality of life through the lively increase in commerce.

Operations Order 5-69
1st Engineer Battalion, 1st Infantry Division
Lai Khe, South Vietnam, 13 November 1969

United States (US) Army engineer support for insurgency or counterinsurgency operations may range from an advisory role to support to ground forces. These may be both conventional and special operations forces (SOF). The type of support provided depends on several factors:

- Type of operation (insurgency or counterinsurgency).
- Degree of US involvement.
- Needs of the group being supported.
- Capabilities of the group being supported.
- Capabilities of opposing forces.
- Secrecy requirements. Operations may be overt, covert, or clandestine.

All engineers must understand the goals of an operation in which they are participating. This applies not only to military goals but also the political, economic, and informational ones as well. Engineers cannot operate in a vacuum. They must be fully integrated into a well-coordinated master plan. This plan will normally be developed by one of the other agencies of the federal government. The Department of Defense (DOD) will be in a supporting role.

INSURGENCY OPERATIONS

The US may support selected insurgencies that oppose oppressive regimes. The US coordinates this support with its friends and allies. Because support for an insurgency is often covert, many of the operations connected with it are special activities. Due to their extensive unconventional warfare (UW) training, Special Forces (SF) are well suited to provide this support. General-purpose forces may assist when the situation requires their functional specialties.
To be successful, insurgencies rely on the mobilization of personnel and resources from within a country. An insurgent organization must build its legitimacy. Therefore, their efforts must also include political, social and, when possible, economic development, especially in areas under insurgent control.

When US forces are directed to do so, they will provide equipment, training, and services to insurgent forces. The following are types of operations in which US forces can assist insurgents:

- Intelligence gathering.
- Surrupitious insertion.
- Sabotage.
- Subversion.
- Linkup.
- Evasion and escape.
- Institutional and infrastructure development.
- Psychological operations.
- Resupply operations.
- Recruitment, organization, training, and equipping a force to perform guerrilla warfare.

During support to an insurgency, SF units will primarily use their organic engineer personnel. Soldiers provide engineer-related advice, training, and assistance to the insurgent forces. Field Manual (FM) 31–20 and branch-specific manuals provide doctrine relating to these personnel.

Conventional engineer units may support SF involved in these operations. They will primarily assist from locations outside the SF area of operations. SF support bases, located in nearby countries, may require sustainment engineering support. Conventional engineer forces may provide specialized training to either SF personnel or insurgents. Topographic engineer support may be provided in the form of standard or special products (maps, terrain analysis products, and so forth). Vertical and horizontal construction by conventional engineer units may play a key role in these operations.

COUNTERINSURGENCY OPERATIONS

This section describes counterinsurgency operations. These are military, paramilitary, political, economic, psychological, and civic actions taken by a government to defeat an insurgency. The measure a government takes to free and protect its society from subversion, lawlessness, and insurgency are known as internal defense. The action a government takes to promote its growth by building viable institutions (political, economic, social, and military) to meet its needs is known as internal development. Together these activities are known as a nation’s internal defense and development (IDAD) strategy. This strategy has two goals. The first is to correct, through internal development, conditions that cause hardship within a nation’s society. These conditions may create an environment in which an insurgency can develop. The second goal is to develop an internal defense capability. This also provides the ability to defeat an insurgency should one develop. IDAD is ideally a preemptive strategy—every effort will be made to promote internal development and to meet the needs of a nation’s people. This may preclude the development of an insurgency. However, if an insurgency does develop, IDAD is also a strategy for counterinsurgency activities.

Support for Insurgency and Counterinsurgency 4-2
Participation by US government agencies in any action taken by another government to free and protect its society from subversion, lawlessness, and insurgency is known as foreign internal defense (FID). Military support to FID is provided by the Commander in Chief (CINC) of the unified command in the region. US armed forces can provide resources such as materiel, advisors, and trainers to support the host nation (HN). Joint and combined exercises can serve to show US support for the HN’s government. In extreme situations, US combat forces may be directly employed to support another nation’s counterinsurgency operations. US combat operations under these circumstances establish conditions that permit the HN to regain full control of counterinsurgency operations. Activities under the auspices of FID may serve one or more purposes:

- Development of sustainable capabilities or institutions within the HN.
- Improvement of the people’s quality of life within the HN.
- Increase of the HN’s capability to provide for its own security.
- Improvement of the standing of the HN’s military (as well as the US military and the US government as a whole) in the eyes of its people.

Together these factors contribute to the legitimacy of the HN’s government and promote stability. Stability is advanced in the country and the entire region. FM 100–20 provides a detailed description of US foreign-assistance programs. Nation assistance activities also contribute to local and regional stability by assisting the development of sustainable institutions that meet the needs of the HN’s people. Chapter 2 addresses nation assistance in detail.

When supporting counterinsurgency operations, force protection is a critical activity. It requires a detailed threat-level analysis of the area of operations. This analysis must be updated throughout the operation. During an insurgency, the threat level may vary from one location to another within a country or region. The insurgents may be drawing their support from a particular area, ethnic group, or social class (farmers, miners, and so forth). The threat may also vary from one time to another. The relative power of the insurgents may wax and wane based on popular opinion. Changes in the political or economic situation or even the season of the year may also affect their strength. A continuous threat–level reassessment is essential for maintaining the correct defensive posture.

Intelligence relating to the local threat may be obtained from a unit’s higher headquarters, other units operating in the same area, or the local police. HN forces may provide the most current intelligence about the area of operations. Planning by US forces is conducted based on current and projected capabilities of insurgent organizations. Even in an apparently benign environment, planners establish contingency plans. Engineer soldiers may become targets for insurgents due to the dispersed mode in which they normally perform their missions. They are particularly vulnerable during deployments for construction projects at remote locations. Engineer equipment and logistics parks are large and difficult to secure or defend. They present easy targets for insurgents. Soldiers operating equipment or hauling materials are vulnerable to ambush by fire, land mines, or booby traps. To protect the force, leaders must establish sound operating procedures before deployment. They must reinforce them throughout the operation. Soldiers should be trained in common-sense countermeasures. If appropriate (and the political situation permits), soldiers may wear helmets and load–bearing equipment and carry weapons to present a “combat–ready” appearance. If a unit appears to be professional, competent, and prepared, it will create the perception among the local populace that the unit is not an easy target. Measures should include such things as—
Knowing the nature and degree of the local threat.
● Maintaining a low profile when in public (off-duty time).
● Traveling in groups when off duty.
● Observing standard operations security (OPSEC) procedures.
● Reporting suspicious packages, vehicles, or individuals.
● Restricting the release of personal data (to include itineraries) on key personnel.
● Providing adequate job-site security.

An insurgent threat is similar to a terrorist threat, particularly if an insurgency is in an advanced stage. Detailed guidelines for force protection under these conditions are provided in Chapter 5 and in Appendix A.

An issue related to force protection is the promulgation of rules of engagement (ROE). ROE are established and promulgated by the headquarters responsible for an operation. In some cases, the National Command Authorities (NCA) will establish the ROE. The unified command responsible for the area in which the operation is being conducted will then disseminate them. ROE must be clearly stated by the chain of command. All soldiers participating in the operation must understand them. ROE should be committed to memory; each soldier must be prepared to act properly in situations without having to first review his ROE instruction. This is essential to prevent incidents resulting from improper use of force. Such incidents could result in unnecessary injury or death of a local national due to lax enforcement of the ROE. At the other extreme, misunderstanding could cause the injury or death of a US soldier due to failure to take appropriate and prudent action.

Engineers participating in counterinsurgency operations may support the internal development of the HN, its internal defense, or both. They can provide mobile training teams (MTTs) or advisors to the HN, take part in single-service deployments for training, or participate in joint or combined training exercises. In an active insurgency, countermine operations may be a major factor. The degree of importance of these operations will depend on the insurgent’s tactics and the HN’s current capabilities.

While supporting a counterinsurgency, engineers may operate as part of a joint or combined force or as an independent unit. They may be augmented with combat support and combat service support assets. Engineers supporting an Army combined-arms unit will operate under the command and support relationships specified in the pertinent operation order (OPORD). They will receive missions and support as outlined in FM 5–100. Command and support relationships for Army engineer units participating in multiservice engineer exercises will be specified in the OPORD for those exercises.

Army engineer units operating independently may be placed in any of several command or support relationships and receive support from several sources. Actual relationships in effect during an operation will be specified in the OPORD for that operation. Engineer teams, detachments, platoons, or larger units may report directly to the US security assistance organization (SAO) in a country. Alternatively, these units may be directly attached to, or under the operational control of, a joint task force (JTF) (such as JTF–Bravo in Honduras) already in the HN. For larger engineer exercises, an engineer battalion, group, or brigade headquarters may provide command and control for engineer units participating in the exercise.

Support for Insurgency and Counterinsurgency 4-4
When an engineer unit deploys independently, it will usually be augmented by combat support and combat service support assets. These units meet logistical, medical, personnel, communications, and other requirements that cannot be met internally. If the situation in the area of operations warrants, combat assets may also be attached for security augmentation. In this case, infantry or military police may provide security where engineer soldiers would otherwise have to provide their own. The engineer unit may receive attachments of other engineer assets to provide a capability not available in the unit. This support element will be tailored to the needs of the entire engineer task force. Considerations include the-

- Size of the engineer task force (including support assets).
- Assets organic to the engineer unit.
- Support available from the HN and US assets already in the HN.
- US Army Corps of Engineers (USACE) area or resident engineer officers.
- Distance from in-country support to the deployment site.
- Security provided by an HN, freeing US engineer soldiers to concentrate on construction projects.
- Assets required to develop the deployment site.
- Mission-specific requirements such as drilling a well or providing medical support for the local populace.
- Climatic conditions that may affect water, maintenance, equipment, or other requirements.
- Security requirements based on the threat’s activity level and capabilities.

When an engineer headquarters deploys, it will normally control the assets that augment the task force.

An engineer unit’s staff must conduct detailed planning to support augmentation for a successful operation. If a deployment is to be conducted by a platoon or company, the next higher headquarters must be involved in the planning process. Planners should use their past experiences in similar situations and that of other units, through after-action reports, lessons-learned reports, and articles published in professional magazines.

Engineers operating independently (individuals, teams, companies, battalions, and so forth) must become familiar with several agencies and organizations. While operating in the HN, they must conduct close and continuous coordination with them. They include the-

- Country team at the American embassy (which also acts as a tie-in to the HN’s national government).
- Local government in their area of operations.
- HN military forces in their area of operations.
- HN police forces in their area of operations.
- US SOF or conventional forces located within the HN.

Chapter 2 contains a detailed description of the country team concept. It also explains the SAO, which is part of a country team.

When required, a foreign internal defense augmentation force (FIDAF) may augment the SAO. The FIDAF is a composite organization operating under a US unified command or a JTF. Their missions include assisting SAOs with training and operational advice. They also provide assistance to HN forces. There is no set structure for the FIDAF—it will be tailored to the HN’s

Support for Insurgency and Counterinsurgency 4-5
needs. Engineer participation in a FIDAF may range from being part of a FIDAF staff to providing augmentation with engineer MTTs or units (detachments or larger organizations). FM 100–20 provides a detailed explanation of the FIDAF concept.

Army engineers involved in civic action projects may interact with the United States Agency for International Development (USAID), which is part of the country team. USAID is primarily concerned with developmental assistance as well as humanitarian and civic assistance (HCA). It supervises and gives general direction on all nonmilitary assistance programs under the Foreign Assistance Act of 1961, Public Law (PL) 480 (Food for Peace), and similar legislation. It administers HCA programs in conjunction with the US Department of Agriculture. Engineers may support HCA projects during either joint exercises or single-service deployments for training. USAID coordinates these projects to ensure that they support the overall US assistance plan in the HN.

Typically, military engineers work in close cooperation with civil affairs organizations and programs. The programs’ objectives are to mobilize and motivate citizens to assist the government and military forces. Constructing communication links is a principal means of spreading government influence and encouraging national unity in developing countries. A system of roads, airstrips, and wharf facilities allows services such as health, education, and welfare to reach the population and encourages central marketing of rural produce. Such development should be a governmental priority with suitable projects identified as civil affairs operations.

Engineer units must coordinate closely with the local government in their area of operations. This coordination improves civil–military relations and reduces the chance of misunderstanding between US forces and the local populace. It also assists US forces in locating resources and reinforces the objectives of FID activities. The local government is best suited to address the particular needs and desires of the populace. US engineers must remember that they are guests in the HN. They are there at the invitation of that country’s government to provide cooperative assistance.

Joint action by US engineers and the HN’s military and civilians reinforces the concepts of US–HN cooperation and the transferal of capabilities from the US to the HN. Civic action projects, in particular, should be joint ventures. When US forces and HN personnel work together on a project, several benefits are gained:

● The local populace gains ownership of the finished product.
● The HN military and civilians gain a capability (management, construction skills, and so forth).
● The fact that the HN government is helping its society is reinforced in the eyes of the people.
● Perceptions regarding the US are improved.
● US soldiers gain a better understanding of the HN.

Coordination should be conducted with local HN military and police forces regarding security, intelligence, and combined operations. Security for US engineer operations should be provided by HN forces whenever possible. This applies to security on job sites, in base camps, and during convoys. The HN presence serves several purposes:

● It reinforces the concept of cooperation between the US and the HN.

Support for Insurgency and Counterinsurgency 4-6
● It reinforces the perception in the eyes of the local populace that the HN is the lead agency in the operation.
● It prevents misunderstandings due to differences in language or customs.
● It reduces negative publicity that may result from direct confrontation between US forces and the local populace.

If an engineer unit is operating independently in the same country as SOF, or other conventional units, coordination (and if possible, liaison) should be established. In some cases, the engineer unit will receive support through a unit that is already in country (for example, through JTF–Bravo in Honduras). SOF located in the HN, specifically Army SF, civil affairs (CA), and psychological operations (PSYOP) units, may provide the engineer unit with essential information. This includes the customs, traditions, and needs of the local populace. SOF may also be able to provide current intelligence, backup linguistic support, and special skills to support engineer operations. These SOF units are regionally oriented and have a great deal of expertise in their areas of responsibility.

The types of support that engineers may provide include a variety of activities. Those listed below were described in Chapter 2. The only difference in application is the environment in which they are conducted and the commensurate increase in the threat level.

- MTTs.
- Technical assistance teams.
- Engineer advisors.
- Joint exercises.
- Engineer-unit deployments for training.
- Military civic action.

In addition, engineer support for counterinsurgency operations may include support for SOF or combat operations.

Some SOF units, such as SF units, have organic engineer personnel. There are two military occupational specialty (MOS) 18C engineers per 12–man operational detachment A. These 18Cs are well–trained in demolitions but have limited construction expertise. FM 31–20 and branch-specific manuals provide doctrine relating to these personnel. During counterinsurgency operations, conventional engineer forces may be tasked to support SOF. Engineers may provide combat, sustainment, and topographic engineering support.

SOF survivability can be enhanced by protective structures that harden critical facilities at SOF operational bases. Engineer units can provide technical assistance in the use of natural and artificial camouflage measures to conceal SOF activities. They can also install protective barriers that support base defense plans. In addition to these survivability tasks, engineer units can also construct full-scale target mock-ups and rehearsal sites and perform other tasks that support SOF sustainment and premission training.

Topographic engineer support may be provided to SOF in the form of standard or special products. Maps, terrain–analysis products, and digital terrain data are provided to the SOF commander so he can develop plans that make the best use of terrain. If available, engineer terrain detachments may provide assistance to SOF in the intelligence preparation of the battlefield (IPB) process.

Support for Insurgency and Counterinsurgency 4-7
During the third and final stage of an insurgency, also known as a war of movement, HN forces are engaged in a conflict with organized insurgent forces. Operations at this time closely resemble a conventional war, although the insurgents may continue to employ guerrilla and terrorist tactics on a localized basis. US engineer operations during a war of movement will focus on support to US and HN military forces. Combat engineer units will provide mobility, countermobility, and survivability support, while other engineer units provide sustainment and topographic engineer support. FM 5–100 and other related doctrinal manuals apply during a war of movement.

CONSTRUCTION DURING COUNTERINSURGENCY OPERATIONS

Construction support for counterinsurgency operations may be performed as exercise-related construction (ERC) training projects or civic action projects. ERC supports Chairman, Joint Chiefs of Staff (CJCS) exercises outside CONUS. Joint Staff ERC funds are expended on enduring improvements and structures constructed to directly support these exercises. Water wells, airfields, and so forth, may be constructed to support deploying forces. ERC funds are used for project materials and project-specific petroleum, oils, and lubricants (POL). Transportation costs associated with movement of personnel and equipment from their home installation to exercise sites and back is also provided by the Joint Staff. ERG projects are normally accomplished through troop construction. Projects may be accomplished by contract construction, however. Other costs associated with exercises come from operation and maintenance (O&M) funds except as specified below.

Some CJCS exercises may be conducted specifically to train US engineer forces. These engineer training exercises are undertaken to-

- Provide United States Army Reserve (USAR) and Army National Guard (ARNG) engineer units the opportunity to deploy to a remote location to fulfill annual training requirements.
- Enhance the readiness of participating US and HN units.
- Expose US active and reserve component units to a bare-base and unusual training environment.
- Develop a positive image in the HN toward the US government and its armed forces.
- Foster better military-to-military relationships.
- Evaluate logistical sustainment operations.

Funding for materials and project-specific POL for these training projects is generally provided by the HN in recognition of its receipt of a finished road, bridge, or other product. The US expends funds on these projects because they are training opportunities.

Another source of funding for construction is Section 401, Title 10 US Code, which provides funds for HCA. These programs are authorized by statute to assist the HN through—

- Medical and dental care and preventive medicine and veterinary services provided in a country’s rural areas.
- Construction of rudimentary surface transportation systems.
- Well drilling and construction of basic sanitation facilities.
- Rudimentary construction and repair of public facilities.

Support for Insurgency and Counterinsurgency 4-8
Congress authorizes the use of O&M funds for HCA. These funds cover materials, fuel, and equipment leases directly related to an HCA project. HCA may not be provided to any individual, group, or organization engaged in military or paramilitary activity. Projects proposed for HCA are reviewed and approved by both the DOD and the Department of State before initiation. Although these projects are normally planned for construction during CJCS exercises, they may also be constructed during single-service deployments for training.

Projects constructed as either training missions or as civic action projects should—

- Meet national developmental criteria.
- Cause no offense to cultural or religious norms.
- Provide a low-technology end product.
- Require minimal maintenance.
- Make maximum use of local resources.
- Require a minimum US troop deployment.
- Be achievable in the short time frame.
- Provide maximum visibility and credit for local government.
- Be constructed in favorable seasonal conditions.
- Have a measurable impact.

These projects may make some use of local contractor support, for example, for the provision of construction materials. This has two effects. First, the material or service the contractor provides contributes to the finished construction project that is an asset to the local populace. Second, the ability of the HN to conduct its own development is increased as contractors gain experience. An engineer leader involved in contracting activities requires expertise or training as a contracting officer’s representative or, as a minimum, should have ready access to contracting officers and legal advice.

PEACETIME TO COUNTERINSURGENCY TRANSITION

It is possible that a nation to which the US has provided peacetime assistance may become the target of an insurgency. If this occurs, the NCA, with the advice of the CINC of the appropriate unified command, may shift the focus of US–forces assistance activities. Specific economic or social conditions that the insurgents are exploiting maybe targeted for correction. If a particular area of the country becomes a base of operations for the insurgents because it is inaccessible, the construction or improvement of surface transportation systems in that region may be appropriate. The goal of these activities must be to isolate the insurgents from the populace, while strengthening the bond between the people and the government of the HN. Planning for this transition from a peacetime to a counterinsurgent focus must be a joint effort with complete participation by the HN, the US country team, and the CINC of the unified command.